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I N F L U E N C E  OF H E A T  C O N D U C T I O N  ON T H E  U N L I M I T E D  

S H O C K L E S S  C O M P R E S S I O N  OF A F L A T  G A S E O U S  L A Y E R  

M. G. Anuehin UDC 533.6 

A numerical investigation is made of the influence of heat conduction on the compression 
of a fiat gaseous layer in which, in the case of an ideal adiabatic gas, shockless compression 
occurs with unlimited cumulation of density and energy. Approzimate formulas are obtained that 
characterize the asymptotic behavior of the cumulation of energy and density and of the energy 
ezpended on compression. It is shown that the phenomenon of density and energy cumulation 
is preserved when heat conduction is taken into account. 

I n t r o d u c t i o n .  The investigation of the gas-dynamic processes accompanying the unlimited growth 
(cumulation) of the density and temperature of a substance [1] is important for the study, for example, of 
thermonuclear fusion [2], the properties of matter under extreme conditions [3], etc. From the standpoint of 
minimizing the energy consumed in attaining the required values of the parameters, regimes in which shockless 
compression of matter is accomplished are the most interesting. For the plane and spherically symmetric cases, 
solutions of the gas-dynamic equations describing the adiabatic compression of an ideal gas with unlimited 
cumulation were given in [4, 5]. The recent results of [6-9] have stimulated interest in this problem. It turned 
out that it is not only one-dimensionai flows that have the property of unlimited cumulation. From the 
analytical solutions constructed [7], describing the two- and three-dimensional, shockless compression of an 
ideal gas, it follows that  the use of a compressing piston of a special shape or the organization of special three- 
dimensional boundary conditions enable one to obtain higher cumulation than in the spherically symmetric 
case. We note that the analytical solutions obtained can serve as a good test in the development and checking 
out of mathematical procedures and programs for calculating two- and three-dimensionai gas-dynamic flows 
[10-13]. At the same time, the question of the influence of the actual properties of physical media on the 
process of shockless compression with cumulation remains little studied. 

The present paper is devoted to an investigation of the influence of the thermal conductivity of the gas. 
It is well known that at temperatures exceeding I keV, which are typical of experiments on laser compression 
of microtargets [14], radiative and electronic mechanisms of heat transfer become important [15]. The simplest 
plane flow in which unlimited shockless compression occurs for an ideal adiabatic gas has been considered 
(the problem of the compression of a flat gaseous layer [4]). The effect of heat conduction was investigated 
numerically using the "Tigr" package of mathematical programs [16, 10, 11]. Along with its relative simplicity, 
the problem under consideration reflects the main aspects of the cumulation phenomenon and is convenient 
in that it has an exact analytical solution in the adiabatic case, which provides an additional control on the 
reliability of the calculations, and also facilitates the comparative analysis of the results with and without 
allowance for heat conduction. Numerical studies showed that if heat conduction is taken into account, the 
unlimited increase in the density of the material is retained although the average compression of the gas 
considerably decreases. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  To investigate the influence of heat conduction on the regime of 
shockless gas compression, we consider the following problem. 
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Fig. 1. Gas regions: OB is the gas region at the initial t ime and OB1 is the gas 
region at an intermediate  time, consisting of the region OE of undis turbed gas 
and the region EB1 of the centered compression wave. 

At the initial t ime t = 0, an ideal, nonheat-conducting gas with adiabatic index 7, speed of sound at 
rest co, and initial density p0 lies between two parallel impenetrable planes tha t  pass through the points 0 
and B perpendicular to the  r axis (Fig. 1). At t = 0, the thickness of the gas layer is r0 =IOB[ .  

The point 0 is stationary. If the motion of the point B satisfies the law 

r B  = ~ 7  + 1 C0t!.If_I)/(q,+I)(_T)2/(~,4.1) -[- 2 coT, r = t - te 
7 1 3 ' - 1  

or  

dre _ 2co (1 _ {'--T'~O-'d/('t+1)'~ 
UB= dt - 7 - 1  \ t o ]  ] '  (1.1) 

the gas is compressed wi thout  a shock wave and "collapses" at t ime tc = ro/co (the collapse time). This 
problem (ignoring heat  conduction) has an analytical solution [4]. At an intermediate t ime 0 < t < tc, the 
solution consists of a region OE of undis turbed gas (rE = --rc0) and a region EB1 of a centered compression 
wave. The point B1 corresponds to  the position of the piston at t ime t. In the region B1E we have 

{ c ,~ 2/(~-I) J 2 
p= po~'~) , T= Cv(7 - 1)7' u= ~ (c- co),,,/_1 

( ~ ( + 1, P=e0 j , c0+ , 

where p is the density, T is the  temperature ,  u is the velocity, P is the pressure, c is the current value of 
the speed of sound in the  gas, CB is the speed of sound near the  moving boundary  of the gas; Cv is the 
specific heat at constant  volume; quantit ies at the initial t ime are denoted by the  subscript 0. This analytical 
solution for one-dimensional gas flow with cumulation was compared with a numerical solution in which heat 
conduction was taken into account.  

One-dimensional gas flow with allowance for heat conduction is modeled by the  equations 

au OP 0 ( 1 )  OU = o, Or Oe Ou 0 ( OT) 
0 - - t + ~ q  = ~  ~ Oq ~ = u, ~ + P oq = Oq ~p ~q , (1.3) 

e = P(p, T),  e = e(p, T) ,  m = as(p, T),  

where dq = pdr is the  mass of a volume element, m is the thermal-conductivity coefficient, and e is the specific 
internal energy. The  gas is assumed to be ideal in this case, but  the contribution of equilibrium emission is 
taken into account, i.e., the  following equations of state are used: 

o" 
P = (7 - 1)CvpT + -~ T 4, ~ = CvT + ~r T4 ' 

P 
where c is the S te fan-Bol tzmann constant,  which equals zero in calculations without  allowance for heat 
conduction. 

The thermal-conduct ivi ty  coefficient m is taken in accordance with the Compton  mechanism of photon 
scattering, which is the  leading mechanism for light gases at temperatures above 1 keV [15], 

2 T 3 
= - -  CYClighta~ , 

7 - 1  p 
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Fig. 2. Profiles of velocity, density, pressure, and temperature  for times: t = 0.99999 
(a) and t = 0.999999 (b); curves 1, 2, and 3 refer to the wv, wp, and hv calculations, 
respectively, and curve 4 refers to the analytical solution (ignoring heat conduction). 

where qight is the speed of light, a is a constant that  depends on the choice of the system of units (~e = 0 in 
calculations ignoring heat conduction).  

The following measurement  units were adopted in the problem: r [cm], t [10 -7 sec], q [g], and T [keV]. 
The calculations were made  for a = 1.37, qight = 3000, a = 5, 3 ~ = 5/3, and Cv  = 11.58 and initial conditions 
r0 = 1, P0 = 0.2, and co = 1. Such values correspond to a DT mixture having the initiM density of DT ice 
and a radius of 1 cm, which are of practical interest for inertial thermonuclear fusion [1]. 

2. C a l c u l a t i o n  P r o c e d u r e .  The calculations were made by the ~Tigr" method  [16], designed for 
solving two-dimensional problems of gas dynamics with allowance for heat conduction. The  method uses an 
Eulerian-Lagrangian description of motion. One family of coordinate lines consists of a fixed set of straight 
lines along which nodes of the  difference grid move, forming a Lagrangian family of coordinate lines. Such a 
coordinate system enables one to model with good accuracy the complex motions of multilayer systems with 
large deformations and to trace the contact discontinuities. The =Tigr" method also has a high economical 
efficiency because the  difference equations are solved using implicit splitting schemes, both in coordinate 
directions and in physical processes. 

The "Tigr" program package has been well recommended for three decades in the solution of an 
extensive class of practical problems. There are now several procedures that  have been combined into the 
single "Tigr-VK" computer  package [10, 11]. In the present work, we used a one-dimensional analog of this 
package, adjusted for the  solution of Eqs. (1.3) in the Lagrangian coordinate system. 

The calculations were made on a difference grid with 250 points along the spatial variable up to a 
time t = 0.999999, when the  average compression in the analytical solution is ~8000 while the maximum 
compression (near the piston) is ,~30,000 (the collapse t ime in our formulation is tc = 1). The  boundary 
condition at the point B (Fig. 1), which controls the gas compression, was given by formula (1.1) in the form 
of velocity (a "hard piston") or by formula (1.2), in which we took c = c8, in the form of pressure (a "soft 
piston"). 

In the calculations with allowance for heat conduction, we had no right to expect unlimited shockless 
compression, since this requires a different law of motion of the compressing piston. Nevertheless, the influence 
of heat conduction on gas compression could be investigated. 

We made calculations without allowance for heat conduction with velocity (wv) and pressure (wp) 
boundary conditions and calculations with allowance for heat conduction - -  (hv) and (hp), respectively. 

503 



TABLE 1 

Parameters 
of the process 

rB 
p" 

P 
E 
K 
A 

Results of Calculations for t = 0.9! 

WV 

6.8089.10 -4 
1129.6 
293.72 
38.955 
164.24 
203.08 

wp 

7.0084.10 -4 
1121.8 
285.37 
38.855 
164.09 
202.82 

hv 

6.8099.10 -4 
8493.4 
293.69 
55.264 
150.38 
205.49 

)999 

hp 

3.7803.10 -2 
6891.3 
5.2906 
22.123 
172.50 
194.47 

Analytical 
solution 

6.8131.10 -4 
1124.7 
293.55 
37.947 
165.03 
202.80 

TABLE 2 

Results of Calculations .for t = 0.999999 

Parameters 
of the process 

r B  

p* 

P 

E 

K 

A 

WV 

1.2335.10 -4 

6599.2 

1624.8 

130.60 

569.62 

700.22 

wp 

1.4696.10 -4 

6307.0 

1360.9 

124.37 

546.26 

670.63 

hv 

1.2317.10 -4 

10661.0 

1623.8 

131.52 

697.14 

828.57 

hp 

3.7288.10 -2 
3 .7312.10 -2* 

96733.0 
96165.0* 

5.3637 
5.3602* 

40.876 
40.633* 

589.90 
590.05* 

630.66 
630.53* 

Analytical 
solution 

1.2349.10 -4 

6324.6 

1619.3 

120.00 

555.36 

675.18 

Note .  Asterisk refers to the calculation with twice the number of points in the difference grid. 
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Fig. 3. Time dependence of internal (a) and kinetic (b) energy of the gas, maximum gas 
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and 4 refer to wv wp, hv, and hp calculation, and curve 5 refers to the analytical solution 
(without allowance for heat conduction). 
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The results of the calculations in comparison with the analytical solution of (1.1),(1.2) are given in 
graphs and tables. 

3. D i scuss ion .  The  wv and wp calculations were made to estimate the error of the numerical solution. 
On the Lagrangian grid, the domain OE of undisturbed gas (Fig. 1) disappears as soon as its size becomes 
comparable to the grid step size h, i.e., at t > 1 - h = 0.996. This results in an increase in the gas-dynamic 
quantities and tempera ture  near the stationary wall and violation of isentropy, in contrast to the analytical 
solution. In Figure 2 shows profiles of the main gas-dynamic quantities for two times, and their numerical 
values in comparison to the analytical solutions are given in Tables 1 and 2, in which rB is the position 
of the piston, p* is the max imum density, p is the average density, E and K are the internal and kinetic 
energies of the gas, and A is the  work of the piston in compression. At the later calculation t ime (Fig. 2b), 
the region of strong departure  of the  temperature  from the exact solution (near the left boundary) is two 
or three points of the Lagrangian grid. The concentration of points increases as the right boundary of the 
gas region is approached. To reproduce the analytical solution in the entire gaseous region, one must  use a 
dynamically adaptive difference grid that  is made finer at both boundaries as necessary. Because of the loss 
of the region of undis turbed gas in the wp calculation with a "soft piston," we observe lagging of the moving 
boundary due to the opposing action of internal pressure forces. At t = 0.99999 (Fig. 2a and Table 1) the lag 
is 3%, and at t = 0.999999 (Fig. 2b and Table 2) it is 25%. Against the background of high gradients of the 
gas-dynamic quantities near the  piston, these departures do not significantly affect the process of unlimited, 
shockless gas compression. The  relative error of the maximum density near the piston at t = 0.99999 is 0.44% 
(wv calculation) and 0.26% (wp calculation), and at t = 0.999999 it is 4.34% (wv calculation) and 0.28% 
(wp calculation). Despite the deep stage of compression, the calculation accuracy in the cumulation region 
remains satisfactory , which inspires confidence that  calculations with allowance for heat conduction will have 
the same accuracy. 

To estimate the  error associated with the step size of the spatial grid, we repeated the hp calculation 
on a grid with twice as many points (see Table 2). The error is tenths of a percent,  which indicates that  a 
sufficiently detailed difference grid was chosen. 

In calculations with allowance for heat conduction, the gas temperature  is equalized over space. The 
region of "undisturbed" gas is heated,  which leads to a pressure increase at the stationary wall. At t ~ 0.9, a 
shock wave is formed, and the region of "undisturbed" gas is about twice as large as in the problem without 
allowance for heat conduction. 

In the hv calculation with a "hard piston," the shock wave moves toward the stationary wall, is reflected 
from it (at t ~ 0.999), and at t ,~ 0.9999905, it collides again with the piston. In the process, a local density 
maximum p* is formed near the piston. Figure 3 gives integral characteristics of the process and the maximum 
density as functions of time. The  energy consumed in compression at the final t ime in the hv calculation is 
23% higher than in the analytical solution in which heat conduction is not taken into account. The maximum 
density (near the piston) is 69% higher (see Table 2). 

In the hv calculation with a "hard piston," nothing develops to prevent the advance of the piston. The 

505 



TABLE 3 

Parameters hp Analytical 
of the process solution 

p* 

P 
E 
K 
A 

0.012 6. ( - r )  -''14r3 
4.939 8- ( - r )  -~176176176 
1.027 3. ( - r )  -~  
0.368 8. ( - r )  -~176 
0.5421. ( - r )  -~ 

0.200 0- ( - r )  -~176176 
0.057 4- (--T) -0"7417 

0.120 0. (--r) -~176176176 
0.382 4- (--V) -~176 
0.495 7- (--r) -~ 

gas can thus be compressed to any density. A hp calculation with allowance for heat conduction and with a 
pressure boundary condition is therefore of the greatest practical interest. 

In the hp calculation with a "soft piston," a shock wave is formed in the initial stage, as in the hv 
calculation. The opposing action of internal pressure forces then retards the motion of the right-hand gas 
boundary, while the shock wave weakens. Figure 4 gives profiles of the gas-dynamic quantities in the hp 
calculation (with heat conduction) in comparison with the analytical solution (without heat conduction) at 
times tl and t2. At t = 0.999999, the piston's coordinate is 300 times larger than in the analytical solution 
(see Table 2). But the density near the piston is 15 times higher because of the temperature decrease in the 
cumulation region. Here the gas is almost entirely concentrated near the moving boundary. Thus, 87.6% of 
the mass of the gas is found in a volume of 0.02% of the gaseous region (near the piston) at the final time. 

Estimates of the degree of cumulation of gas density, pressure, and energy and the energy consumed 
in compression are also of practical interest. Estimates of the degree of energy and pressure cumulation for 
an ideal axiiabatic gas were given in [5]. In the plane case, the work of pressure forces on gas compression and 
the internal and kinetic energies are calculated from the equations 

f 2(7+ 1) 
A = f Pudt = P0 7 - ~ -  i~) 2 [(0"5r2 - 1)(-1")(I-')/('+1) + 0.5], 

0 

J [ P P0(7 + 1) [(_r)_9.(~_D/(.f+D p0 E 1----~dr= + r ] - r  K = A - E + E o ,  (7 -- 7(37 -- 1)(7 - 1) (7 - 1)7' 
0 

where E0 = P0/(7 - 1)7 is the initial internal energy. Approximate formulas for these quantities in the hp 
calculation (with allowance for heat conduction) and in the aa~alytical solution (ignoring heat conduction), as 
well as for the maximum density p* and the average density p, which determine the asymptotic behavior of 
the solntion and the degree of cumulation near f = 0.999999, obtained by choosing the coefficients from the 
results of the hp calculation, are given in Table 3 in the form of exponential functions. It is seen that the 
degree of density cumulation in the calculation with allowance for heat conduction, with less energy consumed 
in compression, is 1.5 times higher than in the analytical solution (ignoring heat conduction). 

Conclusion.  Allowance for heat conduction in adiabatic flow with cumulation leads to temperature 
equalization, so that the gas becomes nearly isothermal in the spatial variable. Despite the fact that the 
average gas compression is considerably degraded, the maximum compression near the piston is far higher 
than in the analytical solution (ignoring heat conduction), and the main mass of the gas has a high density. 
The phenomenon of density cumulation is thus preserved. 

The author sincerely thanks A. F. Sidorov for formulating the problem, useful recommendations, and 
support provided. 
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